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The mobility of a sphere moving slowly along the axis of a rotating, viscous, 
imcompressible fluid has been calculated for zero Reynolds number R and values of 
the Taylor number T ranging from zero to infinity, using a method of induced forces. 
For small values of T the mobility has been expanded in a power series in @; the 
first seven terms of this series have been evaluated. Very good agreement is found 
with experimental data, which are only available for T < 0.75. 

1. Introduction 
The drag force experienced by a sphere that moves along the axis of a rotating 

incompressible viscous fluid depends in a quite complicated way on the velocity U 
of the sphere and the angular velocity SE of the fluid far away from the sphere. This 
conclusion may be drawn from experiments carried out by Maxworthy (1965,1970). 
The present-day theoretical insight in this phenomenon is rather limited, since the 
fluid equations are solvable only after drastic simplification. 

Among the first to consider motion in a rotating fluid were Proudman (1916), Taylor 
(1922) and Grace (1926). The latter obtained a formula for the ultimate drag on a 
sphere, started impulsively in an inviscid incompressible fluid, albeit with an 
estimated numerical coefficient. Many years later, Stewartson (1952) derived the 
exact expression. 

Morrison & Morgan (1956) and Moore & Saffman (1969), among others, included 
viscosity, but considered steady motion in a rapidly rotating fluid. Their result for 
the drag on a sphere is identical with Stewartson’s. Childress (1964) studied the 
motion of a sphere in a viscous fluid in a different regime, in which both the Taylor 
number T = pSEa2/q and the Reynolds number R = pUa/q are small (a is the radius 
of the sphere; p and q are the density and viscosity of the fluid). He was able to 
determine a first correction to the Stokes drag, proportional to @. Recently Dennis, 
Ingham & Singh (1982) solved the fluid equations of motion numerically, and 
calculated the drag for T < 0.5 and R < 0.5. In all treatments mentioned above 
explicit solutions were constructed for the velocity field and pressure field in the entire 
fluid. Subsequently the drag was calculated by integration of the normal component 
of the pressure tensor over the surface of the sphere. 

In this paper we shall evaluate the friction assuming that all momentum convection 
in the fluid may be neglected, i.e. for zero Reynolds number. We do not impose any 
restriction on the value of the Taylor number, so that the results also cover a range 
not considered before. Our analysis makes use of a method of induced forces, which 
was developed by Mazur & van Saarloos (1982) to analyse many-sphere hydrodynamic 
interactions in Stokes flow, and was applied by Mazur and the present author (Mazur 
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& Weisenborn 1984; Weisenborn 6 Mazur 1984) to evaluate the Oseen drag on a 
circular cylinder and a sphere. This method evades the need of constructing explicit 
solutions for the fluid fields. 

In  $2 we briefly discuss the equations of motion and continuity for the fluid. 
In  $3 we introduce an induced force density on the sphere in the equation of motion 

and give the formal solution for the velocity field in wavevector representation, in 
terms of this induced force density. 

In  $4 we expand the induced force density in irreducible force multipoles. Applying 
the boundary condition to the so-called velocity surface moments, we derive a set 
of coupled linear equations for the force multipoles. We then use this set to obtain 
a formal expression for the translational mobility, the inverse of the friction. With 
this expression we may evaluate the transitional mobility on the basis of all 
multipoles up to an arbitrary order, while neglecting the contributions of all 
multipoles of higher order. The actual evaluation, performed on the basis of the first 
five multipoles, shows that the multipole expansion converges rapidly : values for the 
mobility, based on the first three force-multipoles, are for all Taylor numbers altered 
by less than 1 yo if the influence of the fifth force-multipole is also accounted for. We 
further derive an alternative expression which enables us to calculate the first seven 
terms in the expansion of the translational mobility in powers of fi. Finally we give 
the corresponding expression for the rotational mobility for the case where the 
applied torque is parallel to the rotation axis of the fluid, and we calculate with this 
expression the first three terms of the expansion of the rotational mobility in powers 
of B. 

A discussion of the results is given in $5.  This discussion includes a comparison 
with theoretical results obtained previously as well as to experimental data, where 
available. 

2. The equations of motion and continuity 
We consider a sphere of radius a that moves with constant velocity U along the 

axis of a rotating fluid. If unperturbed by the presence of the sphere, this viscous, 
imcompressible and unbounded fluid rotates uniformly with constant angular 
velocity a. In a non-rotating frame of reference the equation of motion (the 
Navier-Stokes equation) and the equation of continuity read 

(2.1) 
for I r-R(t)  I > a, I (2.2) 

d 
dt 

V.u(r , t )  = 0, 

p - u ( r , t )  = V * P ( r , t ) ,  

with 

Here d/dt is the substantial time derivative, u the velocity field, P the pressure tensor, 
p the hydrostatic pressure, and q and p the viscosity and density of the fluid. R(t)  
denotes the position of the centre of the sphere. 

Upon transformation to a frame of reference that corotates with the unperturbed 
fluid, (2.1), combined with (2.3), becomes 

d 
p ~ u ( r , t ) + 2 p ~ A u ( r , t )  = - V p * ( r , t ) + ~ A u ( r , t )  for Ir-R(t)I >a.  (2.4) 
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The reduced hydrostatic pressure p*(r, t )  is defined as 

p*(r,  t)  = p(r ,  t)-!jp(sd2r2- (2.5) 

In  (2.4) and (2.5), d/dt, t) and r denote the substantial time derivative, the velocity 
field and the position vector with respect to the rotating frame ; sd = 16) I. 

We now choose the origin of the rotating coordinate frame at the centre of the 
moving sphere. The fluid motion then becomes time-independent and obeys the 
equation 

Full linearization of this equation with respect to the velocities of both the fluid and 
the sphere amounts to neglecting the first term on its left-hand side. We shall assume 
that both velocities are small enough to justify this linearization. The equation of 
motion now becomes 

p(u(r)--*Vu(r)+2p6)At)(r)  =-Vp*(r)+yAu(r) for r > a. 

2pnAtr(r) =-Vp*(r)+yAu(r)  for r > a. (2.6) 

This equation must be supplemented by appropriate boundary conditions at the 
surface of the sphere. We choose stick boundary conditions: 

v(r) = U + w A r  for r = a, (2.7) 

with w the angular velocity of the sphere in the rotating coordinate frame. We 
consider only the case where the sphere experiences a torque in the direction of the 
angular velocity 6). For symmetry reasons the vector w must then be parallel to 6), 
i.e. o = (o.b)b with b = 6)/sd. 

3. Formulation of the problem using induced forces 
The concept of induced forces enables us to formulate the problem, posed by (2.2), 

(2.6) and (2.7), in an alternative way, as follows: we extend the fluid equations within 
the sphere and write them in the form 

(3.1) for all r ,  I (3.2) 

2pO A U(r) = - Vp*(r) + AU(r) &d(r), 

V*u(r)  = 0 

with Ii;nd(r) = 0 for r > a. As extension of the velocity field within the sphere, we 
choose 

On the reduced hydrostatic pressure we impose the condition 

o(r) = U + o  A r for r < a. (3.3) 

p*(r)  = p(S)*o) r* ( / -bb ) . r  for r < a. (3-4) 

p(r )  = p6)*(w++dJ)r*(/-bb)*r for r < a. (3.5) 

This implies, in view of (2.5), for the extension of the hydrostatic pressure 

The extensions in (3.4) and (3.5) do not include r’= a, since the stick boundary 
condition (2.7) uniquely determines the pressure on the surface of the sphere. In  (3.4) 
and (3.5) / denotes the unit tensor. From substitution of (3.3) and (3.4) in (3.1) it  
follows that the induced force density &(r) is of the form 

&(r) = a-”/lP) 6(r-a). (3.6) 

The factor a-2 has been introduced here for convenience, P = r / r .  
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If we make use of (2.3), (2.5), (3.1) and (3.3), as well as of Gauss' theorem, we can 
express the force K exerted by the fluid on the sphere in terms of the induced force 
density according to 

K =  - dSP.P(r) = - drV*P(r) = - d?'.&(r). (3.7) 
s r  -a j r < a  s 

In a similar way we may also relate the torque T that the fluid exerts on the sphere 
to the induced force density. We have 

T = -  d 8 r A  ( f 'p(r ) )  =-  drrA (V*P(r ) )  =-jd?'rA&(l'). (3.8) 

In  order to solve formally the equation of motion for the fluid we introduce Fourier 

Jr -a J r < a  

transforms ; for example, the velocity field : 

v(k) = dr  e-ik'r ~ ( r ) .  s 
Equation (3.1) and (3.2) become in wavevector representation 

(qk2+ 2p0 A ) v(k) = - ikp*(k) 4- &(k), (3.9) 

k*u(k) = 0. (3.10) 

We now apply the operator /-&&, where & = k/k, to both sides of (3.9) and make 
use of (3.10). We then obtain the equation 

q(k2  + 2Ta-'(/-&&)*[fi A (/-&&)I.) v(k) = (/-&&)'qnd(k)* (3.11) 

Here T is the Taylor number defined as 

7 

The tensor ( / -&A).  [a A (I- &&)I acts on an arbitrary vector s in the following way : 

(/-&&)*[a A(/-&&)] 'S= - ( / - & & ) . [ a A ( & A ( & A S ) ) ]  

= (/- &&) [(a'&) & A S - (a* (& A S)) &] 

= (a'&) & A S = -@*o'S.  (3.12) 

Here E is the Levi-Civita tensor and 6 = a*%. With (3.12) the equation of motion 
(3.11) can be written as 

' v ( k )  = (/-&&)*qnd(k). 

One easily verifies, using (3.10), that the formal solution of this equation is given by 

(I- && + 2T5 & *  €) '&d(k). 
k2a4 

q ( k4a4 + 4Pc2) k2a2 
v(k)  = (3.13) 

This solution implies that the unperturbed fluid is at rest in the rotating frame of 
reference. 

4. Evaluation of the mobility 
The aim of our analysis is the evaluation of the translational mobility of the sphere 

for arbitrary values of the Taylor number. We show in 54.1 that for the problem under 
consideration translation and rotation of the sphere do not couple. Since the tensors 
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relating U to Kand o to Thave a trivial form, owing to the symmetry of the problem, 
both the translational mobility pT and the rotational mobility pR may be defined as 
scalar quantities : 

U -pT K, (4.1) 

w = -pR T. (4.2) 

For the translational mobility we derive in $54.2 and 4.3 two different formal 
expressions. One of these is suitable for numerical evaluation of pT; the other 
expression enables us to obtain by an in principle simple calculation the first seven 
terms in the expansion of pT in powers of 2% For the rotational mobility we derive 
a formal expression in section 4.3 and give the first three terms of its expansion in 
powers of @. 

4.1. A hierarchy of equations for the force multipoles 
As first step in the evaluation of pT we expand the induced force in irreducible force 
multipoles and derive for these multipoles a hierarchy of equations. 

For the induced force density &(k) we may use the following expansion (see 
Appendix A) 

with (4-4) 

f l 2 + l )  is the ( I +  1)th irreducible force multipole moment; 

(2Z+l)!! = (2Z+l)(2Z-l) ... x 5 x 3 ;  
n 

j l (ka)  is the spherical Bessel function of order 1 with argument h. &' denotes the 
irreducible, i.e. symmetric and traceless, tensor of rank 1 constructed with the vector 
& (see, for example, Hess & Koehler 1980, $1.1).  The symbol 0 denotes the full, in 
this case Z-fold, contraction of the tensors &l and fll+'), with the convention that the 

last index of kz is contracted with the first index of F(l+l), etc. 
According to (3.6), (3.7) and (4.4), the force Kis  related to  the first force multipole: 

n 

n 

K = - P I ) .  (4.5) 

Similarly it follows from (3.6), (3.8) and (4.4) that 

T = a e : f l Z ) .  

In order to derive a hierarchy of equations for the force multipoles, we shall 
determine the so-called velocity surface moments, defined as 

I (4.7) 
-S 
Fu(r)  E (4na2)-1 i irFu(r)a(r-a),  p = 0 , 1 , 2 ,  .... 

It may be shown that the following identity holds (see Appendix A) : 

We now substitute (4.3) into (3.13), and the resulting equation into the right-hand 
side of (4.8). We evaluate the left-hand side of (4.8) with the boundary condition (2.7). 

8 FLM 153 
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The result of this procedure is the desired hierarchy of equations : 

m 

2-0 
U6po+u€-06pl = (47t?#Ia)-' x (1 -2Sp2) W(P+1,2+1) 0 F2+1), p = 0, 1,2, ... . (49) 

The factor 1 -2~9,~ is introduced for convenience. The tensors W(P+l* 2+1) of rank 
p+Z+2, which will be called connectors, are given by 

(4.10) W(P+l, 2+1) = (B(,P+l, 2 + 1 )  + B(P+l, 2 2+1) ) (1 -22SpzL 
with 

B$p+1,2+1) = (2p+l)!! (21+ ReB(p+1,2+1), (4.11) 

and with (4.13) 

In  (4.11) and (4.12) Re and Im denote the real and imaginary part; in (4.13) x = ku. 
It is easily checked that W(P+l* l+l) vanishes if p + I is odd, owing to the integration 

over & in (4.11) and (4.12). This allows the separation of hierarchy (4.9) into two sets 
of equations, namely 

m 

U6 = (41cqa)-' i (1 - 26 Pl ) @P+l* 22+1) 0 F(22+1),  p = 0, 1 ,2, . . . , (4.14) 
2-0 

PO 

m 

and U€*fD6,, = (4x?#Ia)-l (1 -26,,) W@P. 22) 0 F(22) , p = 1 , 2 , 3  ,.... (4.15) 
2-1 

The above decomposition ensures that translation and rotation do not couple, as is 
required by symmetry for zero Reynolds number. 

From (4.11) and (4.12) it follows that the two connector parts BIP+'*"+') and 
B$p+l*l+l) satisfy the symmetry relations 

B(P+l,2+1) 1 = (-1) P+l B(Z+l, 1 P+l), (4 .16~)  

B(P+l,2+1) 2 = ( -  l)P+l+l B(2+1. 2 P+l). (4.16b) 

Here c denotes the generalized transposed of an arbitrary tensor C of rank q, defined 
as 

- - 
- - 

(C)a1,u2,  .... up = (Clap, ..., 0 2 , U l '  

We now evaluate the scalar quantity B(p+l* l+l). Considering only the case where 
p+ 1 is even, the integration over & in (4.11) and (4.12) may be replaced by twice the 
integration over those k for which 6 = 64.k 2 0. In Appendix Bt it is shown how 
one can obtain by means of complex integration for B(p+l* 2+1) the expression 

(4.174 

with z = (1 + i )  (TE)!. (4.17b) 

In  (4.17) max (p, I) and min (p, I )  denote respectively the larger and smaller integer 
of the pair p and E. h2)(z) is the first spherical Bessel function of the third kind of 
order n with argument z (see, for example, Abramowitz & Stegun 1968). For small 
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values of their arguments, jn(z) and h g ) ( z )  may be expanded in ascending power series 
in z :  

+O(Zl-n). 
(2n- l)!! 

h$)(z) = -i Zn+l 

One may check by substituting these formulae in (4.17) and the resulting expressions 
for B(p+l*z+l) in (4.11) and (4.12) that the connectors behave for small values of T 
as 

g#(P+l ,  1+1) = & P. 1 g$lP-ll +O(g$(IP-4+1))* (4.18) 

4.2. Systematic evaluation of the translational mobility 
We shall now derive from the set of equations (4.14) an expression for the 
translational mobility. This expression will enable us to evaluate pT on the basis of 
all multipoles up to a certain order, while neglecting the contributions from higher 
multipoles. 

First we shall construct the explicit tensorial form of the irreducible force 
multipoles and velocity surface moments. By definition the irreducible force multipoles 
are integrals of the tensor PAP) over the unit sphere (cf. (4.4)). According to Hess 
& Koehler (1980, equation (2.50)), this tensor can for 1 2 1 be split up into three parts 
as follows : 

CI 

21- 1 o(l) 0 dfP) A r”)+mA(2) 0 df(P)*q.  (4.19) 
- l(21- 1) PAP) = A(l+l) @AP) F- 

1(21+ 1) - 1 

Here A(z) is a tensor of rank 21 that projects out the irreducible part of a tensor of 
rank 1, while O(l) is defined as 

- - 
(n(’))p1 ,..., pt.A,pi ...., pi - (A(l))pI ,.... p t , v I  ...., V [ - ~ , I J [  ( ‘ ) v t . A , v i  ( A ( z ) ) ~ ~ , ~ , . . . . . ~ t - l . p i  ,..., p i ’  

The decomposition (4.19) represents a generalization of the standard decomposition 
of a tensor of rank two into its traceless symmetric and antisymmetric parts and its 
trace. 

Since the connectors are tensors constructed solely with the unit vector s% (cf. 
(4.10)-(4.12)), it  follows from (4.14) that all force multipoles are linear in 0. 
Upon integration over P, the tensors on the right-hand side of (4.19) therefore each 
contain one unit vector 0 and the appropriate number of unit vectors d. Hence we 
may write 

with 

and for 1 = 0 

(4.20) 

(4.21 b) 

8-2 
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In  Appendix C we show that for ali 1 2 1 the tensors 8lZ1+') satisfy the relation 

In view of the identical structure of (4.4) and (4.7), the velocity surface moments can 
be split up in an analogous way. 

We now introduce the scalar quantities blff+'* 21+1), defmed as - blff+'* 2z+1) = (1 -2s ) 812p+l) @ @2p+1, 21+1) @ i , j  = 1,2,3.  (4.23) Pl - 

These quantities satisfy the symmetry relation (cf. (4.10), (4.16a, b) and (4.21)) 

blfj3+1,2Z+l) = b 21+1,2p+l).  
1.6 

Using (4.20) and (4.23), we can write (4.14) in the form 

(4.24) 

c n . 3  

47t7aUdp0 = biff+'* "+') Fpl+'), i = 1,2 ,3;  p = 0,1,2,  .. . . (4.25) 
1-0 1-1 

If  we truncate this set of equations a t  p = 1 = M, we can solve K = f r l )  = - ofil) 
from the remaining finite set of equations by application of CramBr's rule. This yields 
an expression for the translational mobility which takes into account the influence 
of the first M +  1 multipoles with odd superscripts: 

(4.26) 

where I b ( M )  I is the determinant of the matrix b ( M )  with elements b{F+1.2p+1), 
a,B = 0,1,2,  ..., M ;  i , j  = 1,2,3,  and 1 b ' (M)  1 the determinant of the matrix b ' ( M )  
with elements bifJ+'*26+1) , y,d= 1,2  ,..., M ;  i , j  = 1,2,3.  The true mobility is 
obtained in the limit M +  00. 

For M = 0 the expression for the translational mobility reads explicitly 

p T ( 0 )  = - (47c74-1 o*a('~')* 0. (4.27) 

Using (4.10), (4.11) and (4.17), as well as the relations 

sin z 1 
j0(z) = 2, hc)(z )  = - -eiz, 

z 

= -2fl-&F3 e-2T'( (8f i -6f i -3)  sin2fl+(8fi+ 12T+6fl) cos2fi). 
(4.28) 

Combining (4.27) and (4.28), we obtain an expression for pT that contains the 
contribution of the first force multipole alone. Its behaviour for large values of T is 
easily seen to be 

pT(0) = (107c7p-1 T+. 

In Appendix E i t  is shown that pT( 1) behaves asymptotically as 

pT(1) = &(T#IuT)-l{l +O(T-i)}. (4.29) 

In  the limit 7 -+ 0 the above expression for pT( 1 ) is equivalent to Stewartson's formula 
for the ultimate drag experienced by an impulsively started sphere moving in a 
rotating inviscid fluid (see (5.2)). We have not been able to prove that the same result 
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for the mobility is obtained in the limit M +  00, i.e. for the true mobility. We note, 
however, that Stewartson's result has also been derived for the drag on a sphere 
moving steadily in a rapidly rotating viscous fluid (see, for example, Moore & Saffman 
1969), and therefore we feel justified to presume that for T tending to infinity we would 
indeed find 

pT = pT(Co) = &(qaT)-'. 

Equation (4.29) then implies that the first and third force-multipole moments 
together determine the asymptotic behaviour of the translational mobility. 

In  order to estimate the influence of the inclusion of higher multipoles on ,uT for 
arbitrary values of the Taylor number, we have evaluated p T ( M )  numerically for 
M = 0 , l  and 2. The results of the calculations can be found in $ 5 ;  they show that 
the first and third force-multipoles have a dominating influence on the mobility for 
all values of the Taylor number. 

4.3. Power-series expansion for the translational mobility 
In this subsection we shall derive for pT an alternative expression that is in particular 
convenient for analysing the behaviour of pT for small values of T. We shall also give 
the corresponding expression for p R .  

Using (4.5), we rewrite the set of equations (4.14) as follows: 

1-1 

00 
F(2Z+1) = 48(21+1, eZ+i)-I 0 - ~ ( 2 1 + 1 , 1 ) .  K+ 48(2Z+1,2m+1) 0 f(2m+1) ) ( 1  2 1). 

m-1 

m+Z (4.31) 

Here W* denotes the inverse of n ) ,  defined only if n, acts on a tensor 
of rank n that is irreducible in its first n-  1 indices. By iteration we can eliminate all 
higher multipoles from the right-hand side of (4.31) in favour of K. When the resulting 
equations are substituted in (4.30) we get an equation of the form (4.1), yielding for 
,uT the expression 

, u ~  = (47cqa)-1 o*( - i ~ 1 )  + z 

( 

00 

[El... m i 1  1 8-1 
m8-1 

480. 2m1+1) 0 g p m l + l ,  2m1+i)-1 0 ... 0 gi3(2m8+i, 2m,+1)-10 a(2m8+1,  1)). 0. 

(4.32) 

From comparison of (4.26) and (4.32), it  follows that for M 2 2 the expression for 
p T ( M )  given in (4.26) corresponds to a partial resummation of (4.32), involving an 
infinite number of terms, each of which is a part of the direct contribution of the first 
M +  1 force multipoles with odd superscripts to pT. The expression corresponding to 
pT( 1 )  is given by 

pT = (4nqa)-1 0. ( -@1, 1) + gj~ci, 3) 0 ,g,?(3. 0 gp , i ) ) .  0. (4.33) 

With the help of (4.18), we can easily check that the expansion of this expression 
in powers of fl will be correct up to fl, since contributions from higher multipoles 
than the quadrupole are at least of order P. In  Appendix F it is shown that this 
expansion is given by 

pT = ( 6 7 c q a ) - ' ( l - - $ f l + & T 1 - & P - ~ P + + T $ + O ( P ) .  (4.34) 
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We note that this series does not contain terms of order T and fi, and also that the 
coefficient of the term proportional to P is much smaller than the coefficients of the 
other terms. Indeed, if we wish to compute values for pT using (4.36) for comparison 
with experimental data we may as well neglect this term (cf. table 1 in $5). 

We now turn to the other set of equations, the set (4.15), which relates the angular 
velocity o to the force multipoles with even superscripts. We may derive from this 
set a relation between o and T of the form (4.2), yielding for pR the expression 

ms=+ ms-1 

27%) 0 48(2m1. 2md-l 0 . , . 0 g#(2m8, 2md-l 0 gg(zm,, 2) 1 
Here ZZBl denotes a summation over all integer values mi 3 1 ( i  = 1,2, . . . , s) with 
the proviso that for mi = 1 only the part of 93' *2md or 93(zmi, ) symmetric in the 
corresponding two indices is included in the summation. Expansion of the above 
expression for pUR up to Tl yields 

pR = ( ~ R ? u ~ ) - '  (l-&T$)+O(P).  

We note that terms proportional to fl and T are absent in this expansion. 

5. Discussion 
When comparing experimental with theoretical result sfor thedrag force experienced 

by a slowly moving spherical particle, it is convenient to introduce a dimensionless 
drag, defined as 

The following two expressions for this quantity are available in the literature for the 
problem under consideration : 

Childress (1964) 

Stewartson (1952) 
D 8  
- =-T forT-toO. 
D, 9n: 

Childress's result is equivalent to the first term in our expansion of pT in powers of 
fi, (4.34); Stewartson's result has already been discussed in $4.2. We shall now 
compare values for DID, calculated using the above expressions with experimentally 
and numerically obtained values for this quantity, as well as with values calculated 
from (4.26) for pT(0) ,  pT(l) and pT(2). 

We first consider Taylor numbers in the range from zero to unity. Column ( 1 )  of 
table 1 contains values for (DID,)- 1 calculated with (5.1). Values for this quantity 
calculated using the first Seven terms in the series expansion for pT are listed in column 
(2). The results obtained by Dennis et al. (1982) from a numerical solution of the full 
Navier-Stokes equation at R = 0.12 are listed in column (3). Column (4) contains 
values for (DID,)- 1 calculated using (4.28). These values are, to within the given 
accuracy, identical with those obtained from (4.26) for M = 1 and M = 2. Values for 
(D/D,)- 1 obtained by extrapolation of Maxworthy's (1965) experimental data are 
listed in column 5, together with the errors caused by this extrapolation. 
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T 
0.025 
0.050 
0.075 
0.10 
0.20 
0.25 
0.50 
0.75 
1 .o 

(1) 
0.09 
0.13 
0.16 
0.18 
0.26 
0.29 
0.40 
0.49 
0.57 

(2) 
0.10 
0.14 
0.18 
0.21 
0.32 
0.37 
0.56 
0.72 
0.83 

(3) 
0.107 
- 

0.398 
0.631 

(4) 
0.10 
0.14 
0.18 
0.21 
0.32 
0.37 
0.57 
0.74 
0.90 

(5) 
0.09~0.01 
0.13 f0.02 
0.18 f0.02 
0.22 f 0.03 
0.30f0.04 
0.37 f0.04 
0.57 k0.05 
0.75f0.05 
- 

TABLE 1. Values for (D/D,)- 1, calculated using Childress’ result (i), the series expansion (2) and 
the monopole approximation (4); column 3 giving the results of Dennis et aZ., and column 5 the 
experimental values 

T (1) (2) (3) 
1 .o 19.0 19.0 19.0 
2.5 10.8 10.8 10.8 
5.0 7.47 7.74 7.74 
7.5 6.08 6.58 6.58 

10.0 5.27 5.94 5.94 
25.0 3.33 4.61 4.60 
60.0 2.36 4.02 4.02 
75.0 1.92 3.78 3.77 

100.0 1.67 3.64 3.64 
260.0 1.05 3.33 3.32 
500.0 7.46 x 10-1 3.17 3.17 
750.0 6.09 x 10-l 3.11 3.11 

1 o00.0 5.27 x 10-l 3.07 3.07 
1oo00.0 1.07 x 10-l 2.90 2.90 

100Ooo.o 5.27 x lo-* 2.85 2.85 

TABLE 2. Values for lOD/D, T, computed on the basis of the first ( i) ,  the first and 
third (2) and the first, third and fifth (3) force multipole moments 

Appendices B-F containing detailed mathematical arguments are not reproduced here, but 
interested readers may obtain copies on requeat from the author or the editor of JFM. 

It is seen that the results computed using Childress’ formula (5.1) are only 
satisfactory up to T = 0.2, whereas those computed using (4.34) are still satisfactory 
at T=0.75, when compared with the experimental data. The results listed in 
column (a), which were calculated using the monopole approximation of the induced 
force, compare very favourably with those in column (5),  whereas the numerical 
results of Dennis et al., column (3), do not agree too well with the experimental values. 
One should, however, keep in mind that they were calculated for a very small but 
finite Reynolds number, and must be corrected accordingly. 

We have listed in table 2 values for D/D,T for Taylor numbers above unity. 
Column 1 contains results computed with the monopole approximation, while in 
columns (2) and (3) the influences of respectively the third and of the third and fifth 
force-multipole moments is taken into account. It is seen that values obtained from 
the monopole approximation deviate by less than 15 yo from those obtained from the 
monopole + quadrupole approximation for T < 10.0. The inclusion of the influence 
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of the hexadecapole moment does not alter significantly the values for DIDST 
obtained from the monopole + quadrupole approximation for any value of the Taylor 
number. As anticipated, Stewartson's limiting value 81% for DID, T is approached 
more and more closely for higher and higher values of T in columns 2 and 3. 

Maxworthy (1970) has determined experimentally that DID, behaves for large 
values of T as 

_ -  - (0 .43 f0 .01 )~~00*o~01 .  
DS 

In  an attempt to explain the discrepancy between this result and Stewartson's 
expression (5.2), Hocking, Moore & Walton (1979) have analysed the influence of the 
finite axial size of the container, used by Maxworthy for his experiments, on the 
value of the drag. The results of their analysis suggest this is not the main cause of 
the discrepancy. To determine whether (and, if so, to what extent) nonlinear effects, 
in particular the influence of momentum convection, are responsible for the 
discrepancy, it would be interesting to compare the values of DIDST for Taylor 
numbers above unity, listed in column (3) of table 2, with experimentally obtained 
values for this quantity. Except for the asymptotic value, quoted above, such 
experimental results have not been found in the presently available literature. 

The author hereby expresses his gratitude for the help and stimulation received 
from Prof. P. Mazur during the research reported in this paper, as well as with the 
preparation of the manuscript ; stimulating discussions with U. Geigenmueller and 
F. den Hollander are also gratefully acknowledged. 

Appendix A. Irreducible force multipoles and velocity surface moments 
In this appendix we shall derive for the induced force density qnd(&) the expansion 

(4.3), and for the velocity surface moments the expression (4.8). We shall make use 
of the following identity: - 
with f ( k )  an arbitrary function of k = I kl. For the case where f ( k )  = jo(ku) ,  this 
identity becomes, using also Rayleigh's formula (see Abramowitz & Stegun 1968), 

@ j O ( k U )  d' = ( -u) lFj1(ku) .  
n 

(A 1) 

We shall also use the identity 
1 O3 (2Z+l)!! - 

S(P-p') = - z z 0 P,  4n: I !  

which may be derived by combination of the expansion 

with q(x) the Legendre polynomial of degree I (see, for example, Jackson 1975, 
equations (3.62) and (3.117)), and the relation 

(see Hess k Koehler 1980, equation (4.21)). 
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We obtain from (3.6), (4.4), (A 1) and (A 2): 

= JdPSdP' 6(P-P')e-iak'3'f(P') 

which is the desired expansion. Combining (4.7) and (A l), we may derive (4.8) in 
the following way : 
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